

AVALIAÇÃO DO COMPORTAMENTO MECÂNICO DE CONCRETOS COM SUBSTITUIÇÃO DE AGREGADOS GRAÚDOS E MIÚDOS POR AGREGADO LEVE¹

Nelson Seidler²; Alessandra Pinheiro Knorst³; Paola Nadine Johann Külzer⁴

- ¹ Trabajo de Investigación, Universidade Regional Integrada do Alto Uruguai e das Missões URI, Campus Santo Ângelo, RS/Brasil
- ² Engenheiro Civil, Professor Me. e Coordenador do Curso de Engenharia Civil, Universidade Regional Integrada do Alto Uruguai e das Missões URI, Campus Santo Ângelo, RS/Brasil. seidler@san.uri.br
- ³ Acadêmica de Engenharia Civil pela Universidade Regional e Integrada do Alto Uruguai e das Missões URI, Campus Santo Ângelo, <u>alessandra.p.k@hotmail.com</u>.
- ⁴ Acadêmica de Engenharia Civil pela Universidade Regional e Integrada do Alto Uruguai e das Missões URI, Campus Santo Ângelo, pnjohannk@gmail.com.

Resumen

Dois dos principais objetivos no dimensionamento de estruturas de concreto armado são a resistência e a economia. Sabe-se que um dos fatores que mais influenciam no custo de uma obra é o concreto, já que o cimento, seu componente principal, possui valor elevado no mercado. Mehta (2014) classifica o concreto em três tipos, de acordo com sua densidade. Duas das classificações são o concreto de densidade normal, que apresenta massa específica de 2.400 kg/m³ e é utilizado para fins estruturais, pois é constituído de areia natural e pedregulhos, se tornando mais resistente; e o concreto leve, cuja massa específica é menor do que 1.800 kg/m³, tem como seus componentes agregados naturais ou processados termicamente com menor densidade de massa. Experiências concretizadas na literatura mostram que com o uso de agregados leves no concreto pode-se reduzir enormemente as cargas básicas para o dimensionamento do concreto armado, chegando até abaixo de 1500 kg/m³. Assim, a presente pesquisa objetivou simular dois traços compostos por substituição de 10 % e 50 %, respectivamente, de agregado usual por agregado leve como a vermiculita e a argila expandida, avaliando a resistência à compressão, resistência à tração e o módulo de elasticidade. Logo, constatou-se que as misturas com substituição de 10% apresentaram valores superiores que as misturas com substituição no teor de 50 %, para ambos os ensaios realizados.

Palabras Clave: Concreto Leve Estrutural – Agregado Leve – Concreto Armado

Introducción

O concreto estrutural leve tem por definição um concreto estrutural que é feito com um agregado leve celular, por razões de economia, fazendo com que sua massa específica seja bem inferior à de um concreto feito com agregado natural típico, sendo inferior à 2000kg/m³. Pode ocorrer a substituição total ou parcial dos agregados convencionais por agregados leves.

Segundo Rossignolo (2009), a primeira aplicação conhecida do concreto usando agregados leves foi a aproximadamente 1100 A.C., na construção de elementos estruturais produzido por uma mistura de pedra-pomes com o ligante feito de cinzas vulcânicas e cal, sendo seus criadores os construtores pré-colombianos, do México. As mais conhecidas construções

foram arquitetadas pelos romanos durante a República Romana, o Império Romano e o Império Bizantino: o Coliseu de Roma, a cobertura do Panteão e o Porto de Casa.

Além da economia, outra vantagem do concreto leve é a diminuição dos esforços na estrutura das edificações, a redução de custos com transporte e montagem de construções préfabricadas e, também, na economia de fôrmas e cimbramento.

Quanto à dosagem do concreto leve, os métodos utilizados não diferem dos aplicados em concretos convencionais. Apenas devem ser considerados fatores como a massa específica desejada, a absorção de água e a variação da massa específica dos agregados leves em função de sua dimensão e a influência destes nas propriedades do concreto. Assim, a água presente nos agregados deve ser descontada da água a ser adicionada no momento da mistura, e deve ser acrescentada à mistura a quantidade de água que será absorvida pelos agregados após tal. Especificações para o concreto leve determinam que sua resistência aos 28 dias seja de no mínimo 17 MPa e sua massa específica seca ao ar aos 28 dias não ultrapasse 1850 kg/m³. Também é necessário que os agregados leves miúdos não excedam 1120 kg/m³ e os leves graúdos 880 kg/m³ no estado seco. Normalmente limita-se a dimensão do agregado leve graúdo a 19 mm no máximo, conforme ASTM C 330 e ACI 213R-87, citado por Mehta (2014), como pode ser observado na Tabela 1.

Tabela 1 - Exigências para concreto estrutural leve.

Massa Específica aos 28 dias (kg/m³)	Resistência mínima à tração por compressão diametral aos 28 dias (MPa)	Resistência mínima à compressão aos 28 dias (MPa)				
	Todos os agregados leves					
1760	2,2	28				
1680	2,1	21				
1600	2	17				
	Combinação de areia natural e agregado leve					
1840	2,3	28				
1760	2,1	21				
1680	2,1	17				

NOTA: A resistência à compressão e a massa específica devem apresentar a média de três corpos de prova, e a resistência à tração por compressão diametral deve representar a média de oito corpos de prova.

Fonte: Mehta e Monteiro (2014)

Ao se utilizar um agregado muito poroso com dimensão máxima maior que 19 mm, a massa específica do concreto pode chegar a ser inferior a 1440 kg/m³, porém, o produto pode não atingir os 17 MPa's de resistência à compressão exigidos.

Assim, a presente pesquisa objetivou avaliar as propriedades mecânicas de misturas onde substitui-se parte dos agregados miúdos e dos agregados graúdos por agregado leve do tipo vermiculita e argila expandida, respectivamente, avaliando o comportamento do concreto frente a resistência à tração, resistência à compressão e módulo de elasticidade.

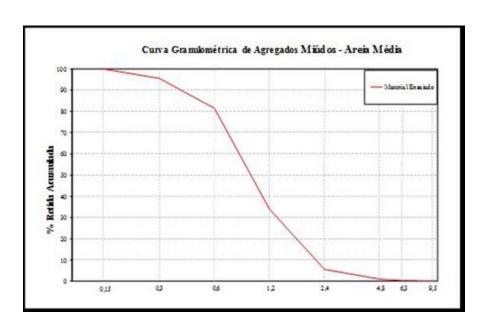
Metodología

Primeiramente, foram caracterizados os materiais utilizados para as moldagens dos corpos de prova. O cimento escolhido foi o CP-IV, cujas características físicas e químicas são apresentadas nas Tabelas 2 e 3.

Tabela 2 – Índices Físicos

	FÍSICOS										
Matariaia	Exp. Tempo de			Cons.		#	#	Resistên	cia à		
Materiais	Quente	Quente Pega (h:min)		Normal	Blaine	200	325	Compressão (MPa)			
	mm	Início	Fim	%	cm²/g	%	%	1 dia	3 dias	7 dias	28 dias
Média	0,15	04:09	04:56	30	4.193	0,53	3,25	13,8	26,8	34,3	47

Tabela 3 – Índices Químicos


		QUÍMICOS								
Materiais	Al2O3	SiO2	Fe2O3	CaO	MgO	SO3	P. Fogo	CaO L.	R. Ins.	Eq. Alc.
	%	%	%	%	%	%	%	%	%	%
Média	9,73	29	3,82	45,01	3,11	2,27	3,71	0,65	25,44	1,1

A produção das misturas foi feita com dois tipos de agregados miúdos: a areia média de rio e a vermiculita.

A vermiculita pode ser encontrada em três diferentes granulometrias: a superfina, fina e média. Para a presente pesquisa foram utilizadas ambas granulometrias misturadas em iguais proporções. A massa específica média encontrada para a mistura de vermiculitas foi de 0,21g/dm³ e massa unitária de 1,605 kg/dm³.

Para a areia média, os dados obtidos pelo ensaio de composição granulométrica possibilitaram determinar o módulo de finura (MF) correspondendo a 2,18, como também o diâmetro máximo de 2,4mm, além da massa específica de 2,667g/cm³ e a massa unitária de 1,605 Kg/dm³. A curva granulométrica da mesma pode ser observada no Gráfico 1.

Gráfico 1 – Curva Granulométrica da Areia Média

Os agregados graúdos utilizados foram a Brita 0 e Brita 1, bem como a argila expandida 0500 e a 1506.

Para o agregado utilizado no concreto convencional, as britas, foram realizados ensaios de composição granulométrica, como consta no Gráfico 2. Através do mesmo, constatou-se que a brita 0 possui diâmetro máximo (Dmáx) de 9,5 mm e módulo de finura (MF) de 5,8. Já para a brita 1, foram encontrados valores para Dmáx de 19 mm e MF de 6,73. A massa unitária das britas é de 1,5183 kg/dm³ e massa específica de 2,0152 dm³.

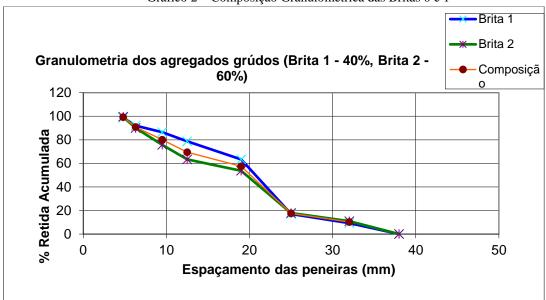


Gráfico 2 – Composição Granulométrica das Britas 0 e 1

Para a argila expandida, as curvas granulométricas constam nos gráficos 3 e 4. A principal diferença entre as duas é a dimensão das partículas. A argila expandida 0500, após ensaios realizados de acordo com as normas técnicas brasileiras, apresentou resultado de massa específica de 0,91g/dm³, absorção média de água de 48,74% e massa unitária de 894,67 g/dm³. Já a argila expandida 1506, apresentou massa unitária de 488,855 g/dm³. Na mistura, as argilas foram acrescentadas em proporções de 20 % da 1506 e 80 % da 0500.

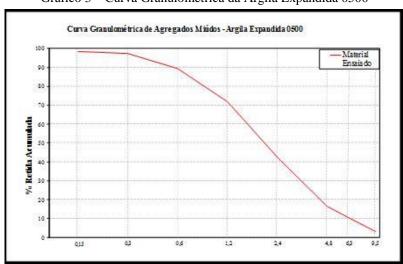


Gráfico 3 – Curva Granulométrica da Argila Expandida 0500

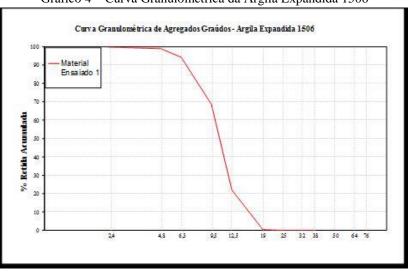


Gráfico 4 – Curva Granulométrica da Argila Expandida 1506

Também foram acrescentados na mistura metacaulim, que é um material pozolânico que forma produtos hidratados similares aos decorrentes da hidratação direta do clínquer Portland; e também um aditivo superplastificante que condiciona maior trabalhabilidade à mistura, em quantidade de 0,06%.

Após a caracterização dos materiais, foi escolhido o método de dosagem do IPT, de autoria de Paulo Helene e Paulo Terzian. Partindo do traço 1:3, foram ajustadas as proporções de cada agregado. Para o primeiro traço, foi escolhido um teor de substituição, para ambos agregados (graúdo e miúdo) de 10 %, e para o segundo traço, um teor de 50 %, como apresentado nas Tabelas 4 e 5. Os dois traços enquadram-se, referente à massa específica, como concreto leve estrutural. O Traço 1 possui 1610 g/dm³ e o Traço 2 possui 1740 g/dm³.

Tabela 4 - Traço 1

Traço Unitário 1 - Substituição de 10%					
Material	Quantidade (Kg)				
Cimento	1				
Areia	1,35				
Britas	1,35				
Vermiculitas	0,15				
Argilas Expandidas	0,15				
Metacaulim	0,15				
f a/c	0,39				

Tabela 5 – Traço 2

Traço Unitário 2 - Substituição de 50%					
Material	Quantidade (Kg)				
Cimento	1				
Areia	1,35				
Britas	1,35				
Vermiculitas	0,15				
Argilas Expandidas	0,15				
Metacaulim	0,15				
f a/c	0,39				

Sendo definidos os traços, realizou-se a moldagem de corpos de prova 10x20 cm, que foram inseridos em cura úmida até a data de rompimento.

Resultados y Discusión

Após o rompimento dos corpos de prova, foram obtidos os resultados para tração, conforme a Tabela 6.

Tabela 6 – Resultados obtidos para Resistência à Tração

Tração (Mpa)							
Traço 1	3 dias	7 dias	Traço 2	3 dias	7 dias		
Tração 1	1,59	2,44	Tração 1	1,02	1,23		
Tração 2	1,81	2,31	Tração 2	1,19	1,65		
Tração 3	1,63	2,03	Tração 3	1,22	1,74		
Média	1,68	2,26	Média	1,14	1,54		

Logo, percebe-se que os resultados para o Traço 1 foram relativamente superiores aos do Traço 2, para ambas as datas de rompimento. O mesmo ocorreu para as tensões de compressão, que podem ser observadas na Tabela 7.

Tabela 7 – Resultados obtidos para Resistência à Compressão

			*	*			
Compressão (Mpa)							
Traço 1	3 dias	7 dias	Traço 2	3 dias	7 dias		
Tração 1	21,42	27,78	Tração 1	9,9	15,33		
Tração 2	17,33	32,38	Tração 2	7,6	15,75		
Tração 3	16,55	24,59	Tração 3	8,03	10,36		
Média	18,43	28,25	Média	8,51	13,81		

Já para os resultados de Módulo de Elasticidade, os resultados obtidos são apresentados na Tabela 8. Percebe-se que há uma variação dos valores que não seguem uma tendência de crescimento.

Elasticidade (Mpa)								
Traço 1	3 dias	7 dias	Traço 2	3 dias	7 dias			
Elast. 1	19,57	29,94	Elast. 1	8,35	18,16			
Elast. 2	21,11	9,83	Elast. 2	9,61	20,03			
Média	20,34	19,885	Média	8,98	19,10			

Conclusiones

A presente pesquisa destacou o crescimento de novas técnicas que venham a tornar a construção civil menos onerosa, ainda mais em tempos de crise. Dentre estas, está o concreto leve estrutural, onde há a substituição total ou parcial de agregados graúdos e miúdos utilizados usualmente por agregados leves, que podem ser processados termicamente e possuem menor densidade de massa.

Assim, objetivou-se avaliar mecanicamente as propriedades de concretos feitos com agregados leves. Os agregados escolhidos foram a vermiculita, em suas três granulometrias, e argila expandida, de granulometria 1506 e 0500. Os traços foram definidos partindo do método de dosagem IPT e em relação à massa específica, enquadrara-se no conceito de concreto leve estrutural.

Para a resistência à tração, os resultados obtidos para cada traço seguem uma tendência de crescimento à medida em que as idades de rompimento aumentam. O mesmo acontece para as tensões de compressão. Contudo, a medida em que se aumenta a proporção de agregado leve no concreto, diminuem-se os valores tanto para a resistência à tração como para à compressão.

Em relação ao Módulo de Elasticidade, os resultados variam. Para o Traço 2, houve o crescimento do módulo a proporção que aumentaram as idades de rompimento, o que não ocorreu para o Traço 1.

Logo, conclui-se que para agregados leves com argila expandida e vermiculita podem-se obter valores de resistência consideráveis, podendo estes concretos ser utilizados como concretos leves estruturais em obras de engenharia, se apresentando como uma maneira de tornar as construções menos onerosas.

Referencias

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7211 (2009). Agregados para concreto: Especificação. Rio de Janeiro, Brasil.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR NM 248 (2003). Agregados - determinação da composição granulométrica. Rio de Janeiro, Brasil.

ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND(2002). Guia Básico de Utilização do Cimento Portland. 7ed. São Paulo, Brasil.

HELENE, P. R. L.; TERZIAN, P. (1992). Manual de dosagem e controle do concreto. PINI, São Paulo, Brasil.

MEHTA, P. K.; MONTEIRO, P. J. M. (2008). Concreto: Microsestrutura, Propriedades e Materiais. IBRACON, São Paulo, Brasil.

ROSSIGNOLO, J. A. (2009). Concreto Leve Estrutural: Produção, Propriedades, Microestrutura e Aplicação. PINI, São Paulo, Brasil.