PROPUESTA DE MÉTODO ALTERNATIVO MATRICIAL PARA LA RESOLUCIÓN DE SISTEMAS DE 2X3 APLICABLE A OTRAS DIMENSIONES¹

Pedro Oscar Semeniuk²

Resumen

Existen diversos métodos para resolver sistemas de ecuaciones lineales que, básicamente, reducen el sistema a otro equivalente donde se deduzca fácilmente la solución.

El presente método, por su simplicidad, es aplicable principalmente para sistemas de 2x3, sistemas que aparecen como intersección de planos en R^3 , pero con la posibilidad de aplicarse a sistemas de otras dimensiones.

Palabras clave: sistemas de ecuaciones lineales – matriz elemental – matriz inversa

Introducción

En muchas oportunidades se presentan sistemas de 2x3 donde geométricamente representan dos planos, que al intersecarse pueden generar una recta, un plano o si son paralelos, nada. Aunque se dispone de diversos métodos para la resolución de los mismos, propongo un método alternativo como una opción más.

Metodología

Para el análisis se deben considerar algunas cuestiones:

- El sistema de 2x3 puede ser expresado en forma matricial:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \end{cases} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ b_2 \end{pmatrix}$$

- Hay que tener en cuenta que si A es una matriz de 2x2 y A^{-1} es su matriz inversa, A^{-1} . $A = I_2$, donde $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ es la matriz identidad de 2x2.
- El objetivo es reducir el sistema anterior a un sistema equivalente tal, que resulte sencillo de analizar y obtener la solución:

$$\begin{cases} a'_{11}x + y + 0z = b'_{1} \\ a'_{21}x + 0y + z = b'_{2} \end{cases} \quad \begin{pmatrix} a'_{11} & 1 & 0 | b'_{1} \\ a'_{21} & 0 & 1 | b'_{2} \end{pmatrix}$$

Considerando la matriz $A = \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}$, si a ésta se la pre multiplica por su inversa (A^{-1}) , se obtiene la matriz identidad (I_2) .

Una forma fácil de obtener la inversa es (método de la adjunta):

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{23} & -a_{13} \\ -a_{22} & a_{12} \end{bmatrix}$$

¹ Experiencias de cátedra.

² Autor, Ingeniero Electricista, semeniuk@fio.unam.edu.ar

Realizando la operación:

$$\frac{1}{|A|} \begin{bmatrix} a_{23} & -a_{13} \\ -a_{22} & a_{12} \end{bmatrix} \cdot \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ b_{2} \end{pmatrix} = \begin{pmatrix} a'_{11} & 1 & 0 \\ a'_{21} & 0 & 1 \\ b'_{2} \end{pmatrix}$$

Y al quedar reducida la matriz ampliada, se reescribe el sistema

$$\begin{cases} a'_{11}x + y = b'_1 \\ a'_{21}x + z = b'_2 \end{cases}$$

obteniendo muy fácilmente la solución:

$$\begin{cases} x = \mu \\ y = b'_1 - a'_{11}\mu \\ z = b'_2 - a'_{21}\mu \end{cases}$$

Un ejemplo:

$$\begin{cases} 2x + 3y + z = 1 \\ x - 2y + 2z = 5 \end{cases}$$
 en forma matricial:
$$\begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & -2 & 2 & 5 \end{pmatrix}$$

La matriz elegida es $A = \begin{bmatrix} 3 & 1 \\ -2 & 2 \end{bmatrix}$ cuya inversa es $A^{-1} = \frac{1}{8} \begin{bmatrix} 2 & -1 \\ 2 & 3 \end{bmatrix}$

Haciendo el producto matricial, se obtiene el sistema reducido equivalente en un solo paso:

$$\frac{1}{8} \begin{bmatrix} 2 & -1 \\ 2 & 3 \end{bmatrix} \cdot \begin{pmatrix} 2 & \mathbf{3} & \mathbf{1} \\ 1 & -2 & \mathbf{2} \end{bmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix} = \begin{pmatrix} \frac{3}{8} & 1 & 0 \\ \frac{7}{8} & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{8} \\ \frac{17}{8} \end{pmatrix}$$

Reescribiendo el sistema: $\begin{cases} x = \mu \\ y = -\frac{3}{8} - \frac{3}{8}\mu \\ z = \frac{17}{8} - \frac{7}{8}\mu \end{cases}$ que en este caso, es la ecuación de una recta.

Otro ejemplo aplicando el método, pero en un sistema cuadrado:

$$\begin{cases} 2x + 3y + z = 1 \\ x - 2y + 2z = 5 \text{ en forma matricial:} & \begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & -2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \text{ donde podemos elegir la matriz}$$

 $A = \begin{bmatrix} 3 & 1 \\ -2 & 2 \end{bmatrix}$ cuya inversa es $A^{-1} = \frac{1}{8} \begin{bmatrix} 2 & -1 \\ 2 & 3 \end{bmatrix}$ y ésta, pre multiplicando a la matriz ampliada:

$$\frac{1}{8}\begin{bmatrix}2 & -1\\2 & 3\end{bmatrix}\begin{bmatrix}2 & 3 & 1\\1 & -2 & 2\\1 & 1 & 1\end{bmatrix}\begin{bmatrix}1\\5\\0\end{bmatrix}$$
 modificamos solamente las dos primeras filas, con lo que queda

la matriz reducida: $\begin{pmatrix} \frac{3}{8} & 1 & 0 \\ \frac{7}{8} & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{8} \\ \frac{17}{8} \\ 0 \end{pmatrix}$ de la cual se reescribe el sistema reducido:

$$\begin{cases} \frac{3}{8}x + y = -\frac{3}{8} \\ \frac{7}{8}x + z = \frac{17}{8} \\ x + y + z = 0 \end{cases} \Rightarrow \begin{cases} y = -\frac{3}{8} - \frac{3}{8}x \\ z = \frac{17}{8} - \frac{7}{8}x \end{cases} \rightarrow \begin{cases} z = \frac{17}{8} - \frac{7}{8}x \\ x + \left(-\frac{3}{8} - \frac{3}{8}x\right) + \left(\frac{17}{8} - \frac{7}{8}x\right) = 0 \\ \Rightarrow x - \frac{3}{8}x - \frac{7}{8}x = \frac{3}{8} - \frac{17}{8} \end{cases}$$

$$\begin{cases} y = -\frac{3}{8} - \frac{3}{8} \cdot 7 \\ z = \frac{17}{8} - \frac{7}{8} \cdot 7 \end{cases}$$
 resultando como solución $S = \{(7, -3, -4)\}$
 $x = 7$

Resultados y discusión

Este método ya ha sido probado en el aula, logrando por su simplicidad, excelentes resultados en el proceso de enseñanza – aprendizaje.

Conclusiones

La mejor forma de probar la funcionalidad de un método, es en el aula, y en este caso pude verificar una muy buena aceptación del mismo por parte de los alumnos, que al poder optar por otros, la gran mayoría lo hacía por éste debido a su simplicidad.

Referencias

Grossman, Stanley I. (1997). Algebra lineal. México: Mc Graw Hill.

Zill, Dennis G. (1985). Cálculo con Geometría Analítica. México: Grupo Editorial Iberoamérica.

Poole, David. (2011). Álgebra Lineal. Una introducción moderna. México: Cengage Learning.