

INTERACCIÓN DINÁMICA ENTRE CONDUCTORES Y POSTES EN LÍNEAS DE TRANSMISIÓN ELÉCTRICA

AGUIRRE, Miguel A.⁽¹⁾, BAKALEIKO, Mauro D., NUÑEZ, Edgar J., DETKE, Fernando R.

Universidad Nacional de Misiones. Facultad de Ingeniería. Departamento de Ingeniería Civil. ing.amangel@gmail.com (1); detke@fio.unam.edu.ar (2);

Área Temática: Proyecto de Investigación con resultados parciales.

RESUMEN

La modelización numérica de estructuras para sistemas de transmisión de energía eléctrica es un tema complejo por las marcadas diferencias de comportamiento de sus elementos componentes: fundación, postes, crucetas y ménsulas, cadenas de aisladores, y cables conductores y de guardia.

En la región de Misiones, las acciones más significativas son las tormentas de viento, además de las cargas permanentes, que originan fallas e interrupción de servicio a gran cantidad de personas e instalaciones productivas.

La respuesta dinámica de cables y cadenas de aisladores, frente a la presión del viento variable en el tiempo y en el espacio, es también influenciada por la propia respuesta del poste y fundación. En este trabajo se estudia dicha interacción dinámica con el objetivo de cuantificar la influencia y calibrar parámetros que permitan decidir cuándo es necesario analizar el modelo completo y cuando es posible desacoplarlos. El modelo desacoplado consiste en analizar primero el cable y cadena de aisladores con extremos fijos, y luego en una segunda etapa analizar el poste y fundación con la reacción dinámica obtenida en el extremo fijo de la cadena de aisladores.

En las aplicaciones numéricas sobre una línea de 132 KV, vanos de 250m y postes de suspensión de hormigón pretensados, se presentan resultados obtenidos teniendo presente que si bien el modelo completo brinda respuestas con magnitudes más aproximadas a la realidad, los tiempos computacionales demandados por el mismo excede en un valor que triplica al obtenido por el modelo desacoplado. Sin embargo, este último muestra una tendencia general y magnitudes medias muy similares frente al modelo completo, ofreciendo, con suficiente aproximación, un aporte significativo a la modelización de esta tipología estructural bajo acciones dinámicas.

PALABRAS CLAVE: Sistemas de transmisión, Dinámica estructural, Cables, Interacción.

