Uso de la Transformada S rápida (fast S transform) aplicada al análisis de señales eléctricas de baja frecuencia.

Ricardo Andrés Korpys¹

¹Departamento de Electrónica,Universidad Nacional de Misiones (UNaM), Facultad de Ingeniería, Departamento de Electrónica.

Seminario de Electrónica de Potencia y Control (SEPOC+SESP) 2014 También REI2014.

Índice

- Motivación
 - Tratar de aprovechar características de herramientas "nuevas", aplicadas al análisis de señales de baja frecuencia en sistemas eléctricos.
 - Poder implementar los resultados de esta investigación en sistemas de tiempo real (RT), con el fín de ser utilizados en, por ejemplo, correctores de factor de potencia (PFC).
- 2 Definiciones
 - Transformada s de tiempo contínuo
 - Transformada s de tiempo discreto
- 3 Como interpretar esta transformada
- 4 Los resultados
 - Resultados principales
 - Ideas básicas para demostraciones/implementaciones

La transformada s de tiempo contínuo.

Para una señal x(t) se define como en [1] o [5]:

$$S(\tau, f) = \frac{|f|}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) e^{-\frac{f^2(\tau - t)^2}{2}} e^{-j2\pi f t} dt$$
 (1)

Depende de t (tiempo) y f (frecuencia). Se sugiere comparar con la transformada de Fourier:

$$X(j2\pi f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$
 (2)

que es sólo función de f.

La transformada s de tiempo discreto.

Para una señal x[n] discreta se define como en [1] o [5]:

$$S(m\Delta f; n\Delta t) = \sum_{k=-N/2}^{N/2-1} X[(m+k)\Delta f] e^{-\frac{2\pi^2 k^2}{m^2}} e^{\frac{j2\pi kn}{N}} \quad \forall \ m \neq 0 \quad (3)$$

Para m=0 se tiene, es decir para la frecuencia cero:

$$S(0; n\Delta t) = X[0] \tag{4}$$

Depende de n y de m. Se sugiere comparar con la antitransformada discreta de Fourier:

$$X[n] = \sum_{k=-N/2}^{N/2-1} X[k] e^{\frac{j2\pi nk}{N}}$$

$$(5)$$
forther a larger

En donde:

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-\frac{j2\pi nk}{N}}$$
 (6)

es la transformada de fourier de la señal x[n]. n es un índice entero relacionado al intervalo de tiempo Δt , m es un índice entero relacionado al intervalo de frecuencias Δf , y k también entero, como el que se utiliza en la IDFT.

Transformada S Rápida.

Si se toman 2^p muestras, en donde $p\geqslant 1$, se puede calcular la transformada rápida de Fourier de x[n] en tiempo discreto, de esta forma acelerar los cálculos. Entonces, se calcula la FFT de una señal real de 2^p valores y se multiplican con los valores de la ventana gaussiana $e^{-\frac{2\pi^2k^2}{m^2}}$ y agregan.

Resultados del análisis de señales simples

A partir de ella se obtiene una representación matricial como (para una señal x[n] de cuatro valores:

$$\begin{cases} S(0,0) & S(0,1) & S(0,2) & S(0,3) \\ S(1,0) & S(1,1) & S(1,2) & S(1,3) \\ S(2,0) & S(2,1) & S(2,2) & S(2,3) \\ S(3,0) & S(3,1) & S(3,2) & S(3,3) \\ S(4,0) & S(4,1) & S(4,2) & S(4,3) \end{cases}$$

Todos ellos resultan números complejos (en general).

Algunas conclusiones del análisis de ciertas características de estos valores.

- Si se toman los valores máximos de los módulos de cada una de las columnas, éstos son prácticamente proporcionales al valor RMS de la señal.
- Si se toman los valores máximos de los módulos de cada una de sus filas, éstos son prácticamente proporcionales a las amplitudes de los armónicos dados por la FFT.

Análisis de una señal con una caída de voltaje

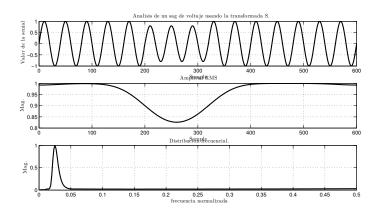


Figura: Análisis de una señal "pura" sinusoidal con una caída de Voltaje.

Análisis de una señal con tercera armónica

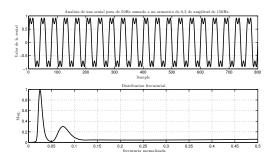


Figura: Análisis de una señal "pura" con componente de tercera armónica.

Análisis de una señal <u>"chirp"</u>

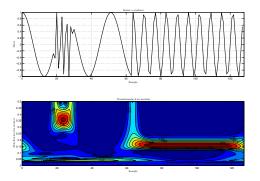


Figura: Una señal "chirp" vista con esta transformada.

Hardware donde se pretende probar esta transformada

 Se pretende programar un DSP (digital signal processor) de punto fijo con dos unidades aritméticas lógicas de cálculos con esta transformada y realizar análisis de señales reales, comparando estos resultados con simulaciones.

Figura: Fotografía de un kit que contiene un DSP Blackfin BF506 para implementar este algoritmo.

Resúmen

- Los primeros resultados de las simulaciones resultan alentadores
- Las aplicaciones potenciales resultan motivadoras en varias áreas.

- Perspectiva
 - Un algoritmo concreto dentro de un DSP para que opere en tiempo real
 - Una evaluación comparativa con otras técnicas actuales.

Lecturas complementarias l

P. K. Dash, M. Padhee, T.K Panigrahi.

A hybrid time-frecuency approach based fuzzy logic system for power island detection in grid connected distributed generation. *Elseiver Electrical Power and Energy System No. 42*, pp. 453-464, 2012.

Lecturas complementarias II

闻 R. A. Brown, R. Frayne.

A Fast Discrete S Transform for Biomedical Signal Processing. 30th Annual International IEEE Conference, Vancouver, British Columbia, Canada, August 20-24, pp. 2586-2586, 2008

📄 C. Venkatesh, D. V. S. S. Siva Sarma, M. Sydulu. Detection of Voltage Sag/Swell and Harmonics Using Discrete S-Transform

TENCON 2008 IEEE Region 10 Conference, August 20-24, pp. 2586-2586, 2008

Lecturas complementarias III

S. C. Pei, J. J. Ding, P.W. Wamg, W. F. Wang. Hybrid Fast Algorithm for S Transform.

18th European Signal Processing Conference (EUPISCO-2010), August 23-27, pp. 1747-1751, 2010

