Aleaciones con memoria de forma y pseudoelásticas para refuerzo de hormigón
Contenido principal del artículo
Resumen
Las aleaciones con memoria de forma reciben su nombre debido a su especial comportamiento: al aplicarles una deformación aparentemente plástica estas vuelven de manera reversible a su forma original luego de un calentamiento. Las propiedades de memoria de forma se encuentran directamente relacionadas con una transformación martensítica reversible en el material. Estas aleaciones tienen un enorme potencial para aplicaciones como refuerzos en estructuras civiles, fundamentalmente para la generación de esfuerzos de compresión en estructuras de hormigón y como base para el desarrollo de elementos amortiguadores antisísmico. A pesar de que el país cuenta con una amplia tradición de más de 50 años en el estudio de estas aleaciones, las aplicaciones industriales siguen siendo escasas. En este trabajo se revisan los antecedentes de aplicaciones de aleaciones con memoria de forma como refuerzos de estructuras civiles. Además, se muestran los principales resultados en la temática obtenidos por los grupos de Transformaciones de Fases y Propiedades Mecánicas del Instituto de Física Rosario y la Facultad de Ingeniería de la Universidad Nacional del Nordeste.
Detalles del artículo
Usted es libre de:
Compartir— copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente.
Adaptar— remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
Atribución— Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Referencias
K. Otsuka, K. and C.M. Wayman, C.M, “Mechanism of shape memory effect and superelasticity” in Shape Memory Materials, 1st edition. Cambridge, United Kingdom, 1998, Chapter 2, pp. 27-48.
L.C. Chang and T.A. Read, “Martensitic transformation in Au-Cd systems”, Trans. Am. Inst. Met. Eng., vol. 189, pp. 47-52, 1951.
M. Motavalli, C. Czaderski, A. Bergamini and J. Lars, “Shape memory alloys for civil engineering structures—on the way from vision to reality”, Arch. Eng. Env., vol. 4, pp. 81-94, 2009.
Y. Watanabe, E. Miyazaki and H. Okada, “Enhanced Mechanical Properties of Fe-Mn-Si-Cr Shape Memory Fiber/Plaster Smart Composite”, Mater. Trans., vol. 43, pp. 974-983, 2002.
T. Sawaguchi, T. Kikuchi, K. Ogawa, S. Kajiwara, Y. Ikeo and M. Kojima, “Development of Prestressed Concrete Using Fe–Mn–Si-Based Shape Memory Alloys Containing NbC”, Mater. Trans., vol. 47, pp. 580–583, 2006.
C. Czaderski, M. Shahverdi, R. Brönnimann, C. Leinenbach and M. Motavalli, “Feasibility of iron-based shape memory alloy strips for prestressed strengthening of concrete structures”, Construction and Building Materials, vol. 56, pp. 94-105, 2014.
W.J. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli and C. Leinenbach, “Stress recovery behaviour of an Fe–Mn–Si–Cr–Ni–VC shape memory alloy used for prestressing”, Smart Mater. Struct., vol. 22, pp. 1–9, 2013.
K. Hong, S. Lee, S. Han and Y. Yeon, “Evaluation of Fe-Based Shape Memory Alloy (FeSMA) as Strengthening Material for Reinforced Concrete Structures”, Applied Sciences, vol. 8, pp. 730, 2018.
J. Michels, M. Shahverdi and C. Czaderski, “Flexural strengthening of structural concrete with iron-based shape memory alloy strips”, Struct. Concrete, vol. 2018, pp. 876-891, 2018.
H. Zhao and B. Andrawes, “Innovative prestressing technique using curved shape memory alloy reinforcement”, Cons. B. Mater., vol. 238, pp. 117687, 2020.
S. El-Tawil and J. Ortega-Rosales, “Prestressing concrete using shape memory alloy tendons”, ACI Structural Journal, vol. 101, pp. 846-851, 2004.
C. Czaderski, B. Hahnebach and M. Motavalli, “RC beam with variable stiffness and strength”, Cons. Build. Mater., vol. 20, pp. 824-833, 2006.
K. Moser, A. Bergamini, R. Christen and C. Czaderski, “Feasibility of concrete prestressed by shape memory alloy short fibers”, Mat. & Struct., vol. 38, pp. 593-600, 2005.
E. Choi, D.J. Kim, J. Hwang and W.J. Kim, “Prestressing effect of cold-drawn short NiTi SMA fibres in steel reinforced mortar beams”, Smart Mater. Struct., vol. 25, pp. 085041, 2016.
Y. Han, W.S. Li, A. Li, A.Y.T. Leung and P. Lin, “Structural vibration control by shape memory alloy damper”, Earthquake Engng. Struct. Dyn., vol. 32, pp. 483–494, 2003.
B. Asgardian, B. and S. Moradi, “Seismic response of steel braced frames with shape memory alloy braces”, Journal of Constructional Steel Research, vol. 67, pp. 65–74, 2011.
Y. Araki, N. Maekawa, K.C. Shrestha, M. Yamakawa, Y. Koetaka, T. Omori, R. Kainuma “Feasibility of tension braces using Cu-Al-Mn superelastic alloy bars”, Struct. Control Health Monit., vol. 21, pp. 1304–1315, 2014.
H. Soul and A. Yawny, “Applicability of superelastic materials in seismic protection systems: a parametric study of performance in isolation of structures”, Smart Mater. Struct., vol. 26, pp. 085036, 2017.
Y.L. Han, D.J. Xing, E.T. Xiao and A.Q. Li, “NiTi-wire shape memory alloy dampersto simultaneously damp tension, compression, and torsion”, J. Vibration & Control, vol. 11, pp. 1067-1084, 2005.
F.H. Dezfuli and M.S. Alam, “Performance-based assessment and design of FRP-based high damping rubber bearing incorporated with shape memory alloy wires”, Eng. Structures, vol. 61, pp. 166–183, 2014.
P. Soroushian P., K. Ostowari, A. Nossoni and H. Chowdhury, “Repair and Strengthening of Concrete Structures Through Application of Corrective Posttensioning Forces with Shape Memory Alloys”, Transp. Res. Rec., vol. 1770, pp. 20–26, 2001.
M. Indirli and M.G. Castellano, “Shape Memory Alloy Devices for the Structural Improvement of Masonry Heritage Structures”, Int. Journal of Architectural Heritage, vol. 2, pp. 93–119, 2008.
A. Benavent-Climent, “Development and Application of Passive Structural Control Systems in the Moderate-Seismicity Mediterranean Area: The Case of Spain”, in 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
T. Sawaguchi, T. Maruyama, H. Otsuka, A. Kushibe, Y. Inoue and A. Tsuzaki, “Design concept and applications of Fe-Mn-Si-based alloys-from shape memory to seismic response control”, Materials Transactions, vol. 57, pp. 283-293, 2016.
B. Schranz, J. Michels, M. Shahverdi and C. Czaderski, “Strengthening of concrete structures with iron-based shape memory alloy elements: Case studies”, in Int. Conf. on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Potsdam, Germany, 2019.
A.V. Druker, “Desarrollo de Texturas y Tratamientos Termomecánicos en aleaciones FeMn-Si con Memoria de Forma”, Ph.D. dissertation, UNR, Rosario, Santa Fe, Argentina, 2009.
A. Druker, C. Sobrero, H.G. Brokmeier, J. Malarría and R. Bolmaro, “Texture evolution during thermomechanical treatments in Fe-Mn-Si shape memory alloys”, Mat. Sci. Eng. A, vol. 481-482, pp. 578-581, 2008.
A. Druker, A. Baruj and J. Malarría, “Effect of rolling conditions on the structure and shape memory propertiesof Fe–Mn–Si alloys”, Mater. Charact., vol. 61, pp. 603-612, 2010.
A. Druker, A. Perotti, I. Esquivel and J. Malarría, “A manufacturing process for shaft and pipe couplings of Fe-Mn-Si-Ni-Cr shape memory alloys”, Mater. & Design, vol. 88, pp. 878-888, 2014.
A. Druker, A. Baruj, L. Isola, V. Fuster, J. Malarría and R. Bolmaro, “Gaining flexibility in the design of microstructure, texture and shape memory properties of an Fe-Mn-Si-Cr-Ni alloy by ECAE and annealing”, Mat. & Des., vol. 107, pp. 153-162, 2016.
I. Esquivel, M.F. Giordana and A. Druker, “Effect of heat treatment on the microstructure and shape memory behaviour of Fe-Mn-Si-Ni-Cr alloys”, Mat. Character., vol. 155, pp. 109811, 2019.
I. Esquivel, “Elaboración y caracterización de aleaciones ferrosas con memoria de forma para uso industrial: un proceso de producción de acoples sin costura”, Ph.D. dissertation, UNR, Rosario, Santa Fe, Argentina, 2021.
I. Esquivel, J. Malarría and A. Druker, “Design, manufacturing and performance OF Fe–Mn–Si–Ni–Cr shape memory seamless couplings”, Adv. Ind. & Manufac. Eng., vol. 3, pp. 100061, 2021.
T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma and K. Ishida, “Superelastic effect in polycrystalline ferrous alloys”, Science, vol. 333, pp. 68-71, 2011.
M. Vollmer, A. Bauer, J.M. Frenck, P. Krooß, A. Wetzel, B. Middendorf, E. Fehling, T. Niendorf, “Novel prestressing applications in civil engineering structures enabled by Fe-Mn-Al-Ni shape memory alloys”, Eng. Struct., vol. 241, pp. 112430, 2021.
J.M. Vallejos and J. Malarria, “Growing Fe-Mn-Al-Ni single crystals by combining directional annealing and thermal cycling”, J. Mat Proc Tech, vol. 275, pp. 116317, 2020.
J.M. Vallejos, M.F. Giordana, C. Sobrero and J. Malarria, “Excellent pseudoelasticity of Alrich Fe–33Mn–17Al–6Ni–0.15C (at%) shape memory single crystals obtained without an aging conditioning stage”, Scr Mater, vol. 179, pp. 25-29, 2020.