SAR Technology Assessment Considering Atlantic Forest Monitoring

Contenido principal del artículo

Ernesto Andres Korpys
Javier Ernesto Kolodziej
Piotr Jerzy Samczyński
Sergio Eduardo Moya

Resumen

 In this paper, an actualized study of synthetic aperture radar (SAR) technology and its potential application to Atlantic Forest preservation are presented. The special characteristics of this biome in the Province of Misiones, Argentina, are considered. It briefly actualizes the satellite and spaceborne systems applications in rainforest, and the applications of drone-borne SAR systems are analysed. In general, SAR images contribute to assessing the structural characteristics of preservation. However, instruments mounted to small unmanned aerial vehicles (UAVs), like drones, are a promising technology for biodiversity surveillance in relatively small reserves (smaller than 100 km2) like most of the reserve areas of the Misiones. 

Detalles del artículo

Sección
Articulos - Trabajos de Investigación

Referencias

R. A. F. de Lima et al., «The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot», Nat Commun, vol. 11, n.o 1, Art. n.o 1, dic. 2020, doi: 10.1038/s41467-020-20217-w.

R. A. G. Viani et al., «Protocol for Monitoring Tropical Forest Restoration: Perspectives from the Atlantic Forest Restoration Pact in Brazil», trcs, vol. 10, n.o 1, ene. 2020, doi:10.1177/1940082917697265.

D.H. Hoekman, «Monitoring tropical forests using Synthetic Aperture Radar», en The Balance between Biodiversity Conservation and Sustainable Use of Tropical Rainforests: International MOFEX-Tropenbos and NWO Workshop, Balikpapan, Indonesia, 2001, pp. 45-62.

L. Moreira et al., «A Drone-borne Multiband DInSAR: Results and Applications», en 2019 IEEE Radar Conference (RadarConf), abr. 2019, pp. 1-6. doi: 10.1109/RADAR.2019.8835653.

P. Samczynski, K. Stasiak, D. Gromek, K. Kulpa, and J. Misiurewicz, «XY-DemoRad – NovelK- and mm-Band Radar Demo Kit for Educational and Commercial Applications», en 2019 20th International Radar Symposium (IRS), jun. 2019, pp. 1-11. doi: 10.23919/IRS.2019.8767460.

M. Wielgo, K. Stasiak, D. Gromek, K. Radecki, and P. Samczyński, «XY-DemoRad - a low-cost K-band SAR system for UAV application», en 2021 21st International Radar Symposium (IRS), jun. 2021, pp. 1-10. doi: 10.23919/IRS51887.2021.9466186.

Erika Podest. “Conceptos Básicos del Radar de Apertura Sintética ''. ARSET Applied Remote Sensing Training. http://arset.gsfc.nasa.go. Jan. 2020.

C. A. Dupas, «SAR AND LANDSAT TM IMAGE FUSION FOR LAND COVER CLASSIFICATION IN THE BRAZILIAN ATLANTIC FOREST DOMAIN», International

archives of photogrammetry and remote sensing, Vol. XXXIII, Part B1, Amsterdam 2.000.

E. P. dos Santos, D. D. Da Silva, and C. H. do Amaral, «Vegetation cover monitoring in tropical regions using SAR-C dual-polarization index: seasonal and spatial influences», International Journal of Remote Sensing, vol. 42, n.o 19, pp. 7581-7609, oct. 2021, doi:10.1080/01431161.2021.1959955.

J. B. de Jesus and T. M. Kuplich, «APPLICATIONS OF SAR DATA TO ESTIMATE

FOREST BIOPHYSICAL VARIABLES IN BRAZIL», CERNE, vol. 26, pp. 88-97, jun. 2020, doi: 10.1590/01047760202026012656.

Marc Bara, Javier Cachón, Antoni Broquetas; Dept. de Teoria del Senyal I Comunicacions; Universitat Politècnica de Catalunya; c/ Jordi Girona, 1-3, 08034 Barcelona. Juan Carlos Crespo; dept. De tecnología Fotónica; Universidad politécnica de Madrid campus de Monte Gancedo s/n, 28660 Boadilla del monte, Madrid. «Procesado de Imágenes SAR (Radar de Apertura Sintetica) Aerotransportado con Compensación de movimiento»,

K. Dumper, P. S. Cooper, A. F. Wons, C. J. Condley and P. Tully, "Spaceborne synthetic aperture radar and noise jamming," Radar 97 (Conf. Publ. No. 449), 1997, pp. 411-414, doi:10.1049/cp:19971707. Available in: https://ieeexplore.ieee.org/abstract/document/629189

A. Reigbe, Y. Lou, and H. Oriot, Guest Editors, "Airborne SAR: Data Processing, Calibration and Applications" Remote Sensing Special Issue. Jun. 2020.

[¨´´´´´14] SAR Aero - Synthetic Aperture Radar (SAR) Systems Engineering Services | Synthetic Aperture Radar (SAR) Electronics. http://saraero.com/store/radar-electronics/. Accessed: April 7th 2022.

IMSAR – Democratizing Radar. https://www.imsar.com/. Accessed: April 7th 2022.

Moreira, L. F.; Hernandez-Figueroa, H. E.; Frias, E.; “Drone-Borne Radar for Forest Inventory”. ABTCP 2020, São Paulo, Brazil, 2020.

R. Albuquerque et al., «Forest Restoration Monitoring Protocol with a Low-Cost Remotely Piloted Aircraft: Lessons Learned from a Case Study in the Brazilian Atlantic Forest», Remote Sensing, vol. 13, p. 2401, jun. 2021, doi: 10.3390/rs13122401.

Hugo E. Hernandez-Figueroa, Bárbara Teruel, Luciano P. Oliveira, Gian Oré, Marlon S. Alcântara, Rodrigo Cintra, Jhonnatan Yepes, Juliana A. Góes, Dieter Luebeck, Valquíria Castro, Felicio Castro, Laila F. Moreira, Leonardo S. Bins, Lucas H. Gabrielli, “Sugarcane Precision Monitoring by Drone-Borne p/l/c-band dinSAR”, IGARSS 21, Belgium, 2021.

https://ieeexplore.ieee.org/document/9554723.

Pantoja, J.; Vega, F., Prado, L., Yang, Q., AlAli, B.; Kasmi, C.; Moreira L.; Luebeck, D.; Wimmer, C. Drone-Borne Synthetic Aperture Radar for GPR Applications: Buried Pipe Inspection. 3rd URSI AT-AP-RASC, Gran Canaria, 29 May - 3 June, 2022.

«Radar De Sensoriamento Remoto». Radaz, https://www.radaz.com.br. Accessed: April 7th 2022.

SkyDrones. «Homepage». SkyDrones, https://skydrones.com.br/en/. Accessed: April 7th 2022

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.